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Submerged laminar jet impingement on a plane is studied using computation. Steady- 
state Navier-Stokes equations for the axisymmetric case are solved numerically. The 
extent of the infinite flow is approximated by applying the boundary conditions at  a 
finite but sufficiently large distance. The tube-exit velocity profile is assumed to be 
either a fully developed parabolic profile or a flat profile. For the former case, two 
different nozzle heights from the target plane are considered. The presence of a toroid- 
shaped eddy a t  low values of Reynolds number, Re, leads to some interesting obser- 
vations such &B the manner in which the wall shear stress depends on Re. An increase 
in the height of the nozzle exit from the target plane decreases the wall shear stress, 
more so at lower values of Re. A change from the parabolic exit velocity profile to 
the flat profile leads to a decrease in wall shear stress due to decreased momentum flux. 
The study was motivated by experiments designed to measure the yield shear strength 
of the vascular endothelium wherein a small saline jet was used to erode the tissue by 
normal impingement. 

1. Introduction 
In this communication we present the details of the flow field arising in a body of 

fluid when a submerged, axisymmetric laminar jet impinges normally on a rigid plane. 
The Navier-Stokes equations for this case have been solved numerically. The moti- 
vation for this problem came from some of our studies (see, for example, Vaishnav, 
Atabek & Patel 1978) in which we used submerged laminar jets of saline impinging on 
the endothelial surface of a vascular tissue to study the shear strength of this delicate 
layer of cells, which is of considerable importance in the study of atherogenesis (Fry 
1973). 

The problem of a fluid jet impinging on a surface is also of considerable technological 
importance. Examples are : hydraulic outlet works; vertical-take-off aircraft; paint 
sprays and jet cooling. However, in most applications the flows are turbulent, and 
consequently most of the work in this area is concerned with turbulent jets only, 
although some studies on laminar jets are also available. 

Previous investigators have identifled three regions of distinct flow characteristics 
(figure 1) in both laminar and turbulent cases: (1) the free-jet region, in which theflow 
is not influenced Bignificantly by the surface of impingement and the dominant velocity 
component is axial; (2) the wall-jet region, in which the dominant velocity component 
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is radial and in which the boundary layer is subject to nearly zero pressure gradient, 
and thickens as one moves radially outward; (3) the impingement region, which lies 
between the other two, which is characterized by significant changes in flow direction. 
Most analytical studies have concentrated on the flow field in the wall jet region. Most 
experimental studies appear to have been carried out in the impingement region. Our 
interest here is to characterize the entire flow field. 

The laminar plane wall-jet was first studied theoretically by Tetervin (1948). 
Glauert (1956) solved the boundary layer equations analytically for the plane and 
axisymmetric cases, and obtained similarity solutions for these problems. He showed 
that for the axisymmetric problem the radial component of the velocity, the boundary- 
layer thickness, and the shear stress at  the wall, are proportional to the - $, $, and - 9 
powers of the radial distance from the stagnation point, respectively. It should be 
pointed out that Glauert’s solution is valid only a t  distances far away from the 
st,agnation point and that the solution involves a constant which needs to be deter- 
mined from other considerations. Bajura & Szewczyk (1970) verified Glauert’s 
solution experimentally. A second-order correction to Glauert’s similarity solution was 
given by Plotkin (1970). 

The case of inviscid two-dimensional jet impingement was treated by Strand (1962). 
Ojha & Gollakota (1977) solved the boundary-layer equations to study the impinge- 
ment over a curved surface. van Heiningen, Mujumdar & Douglas (1976) and Saad, 
Douglas & Mujumdar (1977) obtained the flow field and heat transfer characteristics 
numerically for two-dimensional and axisymmetric laminar impinging jets, respec- 
tively, when the flow is confined between two parallel plates. 

Among the works on turbulent jets we may cite the following. Bakke (1957), 
Bradshaw & Love (1961), Tani & Komatsu (1964), Poreh, Tsuei & Cermak (1967), 
Bradbury (1972), and Beltaos & Rajaratnam (1974) studied turbulent axisymmetric 
jet impingement experimentally. Wolfshtein (1970) used a mixing length model to 
compute the solution for a plane turbulent impingement jet numerically. Kamoi & 
Tanaka (1972) conducted experiments with oblique impingement. Gardon & Akfirat 
(1966) and Baines & Keffer (1976) studied heat transfer under two-dimensional 
turbulent jet impingement. 

It seems that no study is available wherein the complete flow field for a laminar jet 
impingement in an unbounded medium is computed. In  this study we consider the 
case of jet impingement in an unbounded medium and compute the flow field in 
the body of the fluid in which the jet is submerged. The far-field asymptotic form of 
the flow field is simulated by applying numerical boundary conditions at a finite, 
but significantly large, distance away from the impingement region. 

2. Governing equations and boundary conditions 
Figure 1 shows schematically a cylindrical tube of radius a, with its exit end located 

at a height h above a flat surface. We consider the flow field induced by a fluid jet 
issuing from the tube and impinging on to the flat surface. We assume that the jet is 
submerged, the fluid is of infinite extent, the flow is axially symmetric, and the tube is 
of infinite length and zero thickness. We employ a cylindrical co-ordinate system 
( r ,  8, z )  shown in figure 1 to describe the flow field. 

If we assume that the flow is steady and laminar, and the fluid is incompressible and 
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Impingement region 

FIGURE 1. Flow configuration. 

Newtonian, then the governing differential equations are the Navier-Stokes equations 
and the continuity equation (Schlichting 1979). If weuse vorticity and stream function 
as the dependent variables, these equations reduce to 

where R = ./ao and Z = z/ao are the non-dimensional co-ordinates, v, and v, are the 
radial and axial velocity components, V, = vJ25 and V, = vJ25 are the corresponding 
velocity components, non-dimensionalized with respect to 5 ,  the average velocity at 
the tube exit plane. 

In  the above, w = aV,/aZ - a&/aR is the non-dimensional vorticity, + is the non- 
dimensional stream function such that V,  = R-la+/aR and V, = -R-la+/aZ, and 
Re = 2Ua0/v is the Reynolds number in which v is the kinematic viscosity. Other 
quantities of interest are p, the fluid density, H = h/ao, the non-dimensional height of 
the tube exit above the flat surface, and P = p/(4p;iia), the non-dimensional pressure. 
Solution of the problem consists of solving differential equations (1) and (2) subject to 
the boundary conditions described below. 

At infinity, the velocity components go to  zero asymptotically. For the numerical 
solution of the problem we apply appropriate boundary conditions a t  the boundaries 
AF and FE in figure 2, so that the flow field at infinity is sufficiently well approximated. 
The boundary conditions applied on CD and the five surfaces CB, AB, DE, AF and 
FE are as follows. 

(a) On the mi8 CD. Because of axial symmetry, V, = 0, w = 0, $ = constant on 
CD. Without loss of generality, we take + = 0 on CD. However, w/R + 0 on CD, but 
can be evaluated as follows. Assume that + is of the form, 

+ = a(2) RB+ b ( 2 )  R4 (3) 
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FIGURE 2. Boundary conditions. 

in the neighbourhood of CD, where a(2) and b ( 2 )  are functions of 2 only. At a given 
value of 2, 11. = a(2) R2+ b ( 2 )  R4. By substituting this form of 11. in ( l ) ,  the value of 
w / R  at 2 = 2, can be expressed as 

The values of b ( 2 )  and a(2) in ( 3 )  can be obtained as 

in terms the values +l and $2 of 11. at the nodal points (Rl, 2) and (R2, Z), respectively 
(see figure 2). 

(b) On tube mit plane C&. On this plane, velocity V, is assumed to have a parabolic, 
fully developed profile, RZ- 1. Also, @ I C B  = - i R 2  + $R4 and (w/R)cB = - 2. Some 
cases with a nearly flat velocity profile were also considered. For a truly flat velocity 
profile $ I c R  = - )R2,  and o / R  = 0, except a t  the lip of the tube ( R  = 1) where 
w/R -+ co. To avoid this difficulty of specifying w / R  at R = 1, a profile with almost 
constant velocity was taken with V,  = 5(R1* - 1)/9, for which 11. = RS0/36 - 10R2/36, 
and w/R = - 1ORl6. 

(c )  On the tube wall AB. On this surface, the ‘no-slip’ boundary condition is applied. 
The manner in which the problem has been non-dimensionalized, leads to 11. = -4, 
regardless of the exit velocity profile at CB. Vorticity o is unknown on AB. It can be 
approximated as follows. We first expand 11. and w in Taylor series in R a t  R = 1 ,  for a 
given value of 2. We then set the derivatives (a@’/aR)I,=, and (an$/aZn)lR=l for all n 
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and Z equal to zero in the series for + to account for the ‘no-slip’ boundary condition 
at R = 1. In addition, we use the governing equation (1) which leads to 

+ O(&, - A$( 6/Z2) - ~1 R1 
woRo = 2 + (Z/R,) - (Z2/4R3 ( 5 )  

where A+ = +l - +,, 1 = Rl - R, = Rl - 1 and the suffixes 0 and 1 correspond to the 
nodal points 0 on the wall and 1 the adjacent nodal point in the radial direction (see 
figure 2). Details may be obtained from Lester (1961) or Deshpande, Giddens & Mabon 
(1976). 

(d )  On wall DE. ‘No-slip’ boundary condition is applied on this surface and the 
value of + is taken to be zero. A procedure similar to that used for the wall A B  yields 

where A+ = +l-$o and k = 2,-2, = 2,. 
( e )  On boundary AF.  As Z -+ 00, V’+ 0 and V, -+ 0. However, these boundary 

conditions cannot be applied in a numerical scheme and appropriate boundary 
conditions must be applied at a finite distance. Therefore, on the boundary AF, which 
is located at a distance of 10 tube radii away from the plane of impingement, we use the 
boundary conditions 

azp aw a z * = o ,  = o .  (7) 

The first of these boundary conditions implies that aVR/a2 = 0. 
(f) On boundary FE. As R + 00, VR -+ 0 and V ,  + 0. Again, we must simulate these 

conditions by applying boundary conditions a t  FE which is located at a finite distance 
of 10 tube radii from the tube axis. It is not satisfactory to assume that the gradients 
of $ and w in the radial direction go to zero on the boundary FE. We therefore have 
developed a method to formulate the boundary conditions which employs a weak form 
of Glauert’s similarity solution. 

In this procedure, information from line f e  is employed to determine @ and w/R 
values on line FE, i.e. at  nodal points P, Q, R, S, etc. (figure 2). Since the Similarity 
solution due to Glauert contains an unknown constant, it cannot be used directly to 
determine the + and w values on line FE in terms of conditions at the tube exit plane 
CB. However, the flow quantities at  a typical point Q on line FE and at the corre- 
sponding similarity point p on line fe can be related explicitly in terms of their radial 
locations, RQ and Rq, respectively. The flow quantities on linefe are taken from the 
solution a t  the previous level of iteration and hence are exact only when the solution 
converges. 

The distance from the wall, ql, in the similarity solution is proportional to R-22. 
Now, corresponding to the nodal point Q on the line FE, a point q can be selected on 
the line f e  such that both have the same T,I,, that is, they correspond to the same point 
in the similarity solution. Hence the s t r a m  function and vorticity in the similarity 
solution (not $ and w as defined in this study) are the same at  these points. Using this 
equality to relate $ and w at corresponding points Q and q we can write 
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These relations enable us to calculate $and w / R  at point Q from the known values at q. 
The point q is not a nodal point and a Lagrangian interpolation scheme was used to 
compute the values at  q from the three neighbouring nodal points on line fe. 

The method was successful except when the distance eE was excessively large. 
(A better way of describing this would be in terms of the ratio RJR, of the radii Re 
and RE.)  This is not a serious problem since good numerical accuracy demands a small 
value of eE anyway. The success of the method was proved by comparing the profiles 
obtained at  FE with the similarity solution and by moving the boundary FE closer 
to the axis and still being able to reproduce practically the same results. Explicit 
forms of the similarity solution were not assumed at the boundary F E .  

3. Numerical solution 
To solve the problem numerically, a co-ordinate transformation is used so that the 

grid points in the transformed plane are distributed uniformly, while providing more 
points in the physical space where the flow variables such as vorticity and velocities 
are expected to change rapidly. The transformation used was 

s = tanh k, R, (11) 

7 = a Z + b ( l - e - C Z ) ,  (12)  

where k,, a, b, and c are constants. Correspondingly, the governing equations ( 1 )  and 
( 2 )  are transformed to 

where 

a2t 
- aR2 M - - = - 2k,sM1, 

N - - = a+bce+z 
- a2 

N - - = - b c 2 e - c z = c ( a - N , ) .  8% 
- a 2 2  

Equation ( 1 1 )  transforms the line 0 < R c co into the line 0 < t c 1. On the other 
hand, equation ( 1 2 )  transforms the line 0 < 2 < co into the line 0 < 7 c co. For both 
of the transformations, equidistant intervals in the transformed lines correspond to 
closely spaced intervals in the physical space near the axis (for R )  and near the wall 
(for 2). From equation (12 )  we see that for large values of 2, the transformation is 
approximately linear. The actual values of the constants k,, a, b, and c to be used in a 
particular case depend, to a certain extent, on the actual values of Re and H .  For 
example, the set of values, c = 3, a N 0.07143, b 1: 0.28572 and k, 2: 0.15288 was found 
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FIGURE 3. Control volume for numerical scheme. 

to be satisfactory for H = 4 for all values of Re used in the present study. Inverting 
transformation (1 1) is straightforward, but such is not the case with transformation 
(12). For a given 7, one has to resort to an iterative scheme to compute 2 from (12) and 
simple schemes are likely to fail for small or for large values of 7. A Newton-Raphson 
scheme was used to compute the values of 2 corresponding to the nodal values of 7. 

We may mention here that an earlier numerical scheme employed a hyperbolic 
tangent transformation similar to (11) in the 2-direction also. It was found to be 
satisfactory at low values of Re; however, numerical experiments proved that the 
results were unacceptable at high values of Re. A switch to transformation (12) was 
made and the present combination of transformations (11) and (12) proved to give 
consistently good results. 

The transformed equations (13) and (14) together with the boundary conditions 
were solved numerically using the finite-difference scheme of Gosman et al. (1969) with 
some modifications. Difference equations were generated by integrating the equations 
over a control volume surrounding a point P (shown by dotted lines in figure 3). 
Upwind differencing was used to approximate the convection terms. The resulting 
difference equations express the values of the dependent variables at P in terms of 
their values a t  the eight neighbouring nodes N ,  NE,  E ,  etc. These equations are 
summarized below. 

To simplify writing, equations (13) and (14) are cast in the general form 

where $ = w / R  or $. The values of the coefficients a, b,, etc. are listed in table 1. The 
final difference equations for o / R  and $ are 

(20) $P r, (A3 + q = x [$j(A, + q 1 -  J P P ,  
3 3 

where summations are carried out over the four points E ,  W ,  N ,  and S (see figure 3), 
and the suffix P refers to the nodal point P. A bar over a term represents the average of 
the term over the control volume. Also, 

vP = k R P ( 7 N - 7 S )  (6E-6W’)s (21) 

(22) = ‘ P [ ( $ N + $ N E  -$S-$SE)  -k 1 ( @ N  + @ N E - $ S -  $SIC)ll/s 
FLY I14 a 
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a C d 

0 

TABLE 1. Coefficients in equation (19). 

1 

1 

0 

with similar expressions for A,, A, and A,, and 

with similar expressions for B,, BN and B,. The two equations represented by (19) 
were solved using an iterative scheme. In this scheme, an initial guess is made for the 
flow field and the boundary conditions are imposed. The set of difference equations is 
then solved for the whole domain of interest by using the latest values of 11. and o 
available. The boundary conditions are then recomputed from the latest values of 11. 
and w and the process is continued until convergence is obtained. Convergence is tested 
by comparing the values of $ and w from successive iterations and ensuring that the 
maximum changes in $ and w are within preselected tolerances. These tolerances were 
generally set at 6 x 10-6 and 10-5 for $ and o /R ,  respectively. 

The vorticity at the tube lip is a discontinuous function and thus it required special 
consideration. When solving the equations for a point with R < 1, the vorticity value 
at the tube lip was assumed to be the same as the vorticity of the tube exit-velocity 
profile. For calculations a t  a point with R > 1, the vorticity value at  the lip was 
obtained by calculating it as though the lip were a point on the exterior of the tube wall. 
For calculations at the points exactly under the lip ( R  = 1)) an average of the two 
values obtained above was employed. 

The velocities, pressure and wall shear stress were calculated after the converged 
solution waa obtained. Velocities were obtained from the stream function using the 
central difference scheme. The radial pressure gradient on the plane wall is 

The axial pressure gradient at  any point can be calculated from 

and the wall shear stress 7, (dimensional value) from 

7,/(4pf2) = @,/Re. (26) 

The solution obtained for a particular value of Re was used as the initial guess for 
the iterative computations for a higher value of Re. The number of grid points in the 
radial direction was 61 with 11 points between R = 0 and R = 1. The number of grid 
points in the axial direction was 36 with 18 points between Z = 0 and 2 = H. The 
number of iterations required to get a converged solution varied from 300 to 600. One 
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hundred iterations required about 78 seconds of computer time on the DEC system-10, 
Model 90, computer at  The Catholic University of America. 

Various numerical experiments were performed to ensure numerical accuracy of the 
results. For example, in one experiment, the convergence of the solution was studied. 
For the case of H = 4 and Re = 1250, the solution converged after 600 iterations 
according to the criterion described before. An additional 600 iterations were executed 
to make sure that the solution obtained did not drift away. In another set of experi- 
ments, the effect of grid spacing and the transformation parameters was studied. This 
was done by (a) taking a eruder grid spacing, (b) taking a finer grid spacing, and 
(c) varying the constants in the co-ordinate transformation substantially to see if the 
choice of constants was satiafactory. A third set of experiments was conducted to 
check how well the boundary conditions applied on E% and AP (figure 2) simulated 
the conditions at  R = 00 and Z = 00, respectively. This was done for the case of 
Re = 1000 by changing the locations of PE and AT. The boundary AP was moved to 
a height of 20 radii. The boundary FE was moved to 20,8 and 6 radii distances. The 
weak form of the similarity solution proved to be applicable at  a distance as close as 
6 radii. The solution obtained in the similarity region was compared with the solution 
due to Glauert and the computed solution in the neighbourhood of the stagnation 
point was compared with the stagnation point flow solution (Schlichting 1979). These 
comparisons are shown in a later section. The numerical scheme mentioned earlier 
which used a hyperbolic tangent co-ordinate transformation in the Z-direction did 
not yield satisfactory results at  high Re when subjected to the three checks of accuracy 
mentioned above and was therefore discarded. On the other hand, the present scheme 
yielded satisfactory results when subjected to these tests, which enhances our con- 
fidence in the results. 

4. Results 
As noted previously, calculations were performed for two tube exit-velocity profiles 

and various values of Re and H. For the parabolic velocity profile, the values of H = 4 
and H = 3 were used. For the former case, a range of Re from 0 to 2000 was used and 
for the latter cme a range of Re from 0 to 1500 was used. For the flat velocity profile, 
a value of H = 4 was used with Re = 1000, 1500 and 2000. 

4.1. Streamlines and vorticity contours 
A good description of a steady laminar flow is given by a display of the streamlines. 
Three such displays of streamlines are given in figure 4 for three representative 
Reynolds numbers. In  these cases, the value of H was 4 and the parabolic exit-velocity 
profile was used. A toroidal eddy can be seen in figure 4(a )  just above the tube exit 
level. The nature of the flow at this low value of Re = 1 is somewhat different from the 
three distinct regions indicated earlier in figure 1. Notice that at  the R = 10 boundary 
the gradients of @ in R direction do not go to zero. If the Reynolds number is increased, 
the eddy is pushed downward (figure 4 b, Re = 25) and also there is an increase in the 
volume of fluid rotating in this fashion. When the Reynolds number is increased even 
further (figure 4c, Re = 1000) the eddy is swept away and we get the three regions of 
flow discussed in 5 1. The flow issuing from the tube is seen to be restricted to a thin 
region between the wall and the streamline with @ = - 0.25. At  Re = 100 the nature 

8-2 
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Caption for figure 4(a) on p. 224. 

of the flow is similar to the case of Re = 1000 and as may be expected, the boundary 
layer is thicker. 

The vorticity contours are displayed in figure 5 for H = 4 and Re = 1 and Re = 100. 
It can be seen again clearly that the gradients of the flow quantities do not go to zero 
at the boundary R = 10. This re-emphasizes the need to treat the boundary conditions 
on FE in the manner described earlier rather than merely setting the gradients of 9 
and o in the R direction to be zero. 

The presence of the eddy at  low Reynolds numbers has a strong influence on the 
flow characteristics and hence the locus of the centre of the eddy is indicated in 
figure 6 for the cases of H = 3 and H = 4 and the parabolic inlet velocity profile at  the 
tube exit. The Reynolds numbers corresponding to these steady-state solutions are 
indicated in the figure. A slight increase in Re from zero to two leads to a radially 
outward shift of the centre of the eddy. An increase from 2 to 25 causes an almost 
vertically downward shift, with a very slight shift of the centre of the eddy toward the 
axis. A further increase in Re to 70 causes a radially outward and slightly upward shift. 
As will be seen later, a large change in flow behaviour takes place close to the wall, 
under the eddy, when Re is increased from 2 to 25. 
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4.2. Velocity proJiles 
Radial velocity profiles in figure 7 are shown for several radial locations, R, for the case 
of H = 4. At a low Reynolds number, Re = 1 (figure 7a), the radial velocity is low 
everywhere due to viscous diffusive action. The maximum values of velocity occur 
away from the flat surface and the wall vorticity (non-dimensional) is seen to be small 
(see figure 6a).  The radial velocity at the tube exit is positive as can also be seen from 
the streamline patterns in figure 4 (a). The picture a t  a higher Re of 1000 (figure 7b) is 
distinguished by its high values of radial velocity close to the flat surface and high wall 
shear stress. Wall vorticity is seen to increase and then decrease aa one moves out 
radially. The suction caused by the jet induces a slight radially inward velocity at  the 
tube exit and everywhere except close to the wall. This may also be seen from figure 4 (c). 

The corresponding axial velocity profiles at  various radial locations are shown in 
figure 8. At the low value of Re = 1, axial velocity under the jet is seen to decrease 
rapidly even before the flat surface is approached (figure 8a). This is not the case a t  
Re = 1000 due to strong axial convection as may be seen from figure 8 (b). 

A comparison is made in figure 9 (a) between the velocity profile obtained at  R = 10 
(for H = 4 and Re = 1000) and the similarity solution due to Glauert. Since there is an 
undetermined constant, F, in the similarity solution of the boundary-layer equations, 
direct comparison is not possible. However, the same constant is involved in the 
transformation of all the variables and one can check the value of this constant for 
consistency as obtained from two different variables. For the case of H = 4, and 
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FIQURE 4. Streamlinee, H = 4. Parabolic tube exit-velocity profile. 
(a) Re = 1; (b )  Re = 26; (c) Re = 1OOO. 

Re = 1000, (P/vsao)4 turned out to be 4297 when the peak velocity of 0.1172 was 
matched with the maximum value off' = 0.315 from the similarity solution. The same 
constant turned out to be 4274 when the location of this peak velocity a t  Z = 0.386 
was matched with a value 2.029 of ql, the length measured vertically from the wall in 
the similarity solution. In  figure 9(a) the similarity solution is scaled to equate the 
peaks and the location of these peaks is seen to be in very good agreement. The two 
profiles agree well except away from the wall. The similarity solution was obtained 
assuming that as q1 --+ 00, the radial velocity goes to zero without attaining negative 
values. In  the present study this is not true since the jet draws the fluid radially inward. 

A further compariaon is made between the solution obtained and the axisymmetric 
stagnation point flow solution (see, for example, Schlichting 1979). The constant 
appearing in the stagnation-flow solution was determined at the stagnation point by 
equating the gradients of the wall shear stress for the two solutions at  the stagnation 
point. This constant was then employed to compare the velocity profiles at R = 0.1 and 
R = 0-3 in figure 9(b). It is clear from the plots that comparison is good only in a small 
regioh and the agreement between the axial velocities is slightly better than that 
between the radial Velocities. 
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4.3. wall 8 k T  8tTeSS 

Non-dimensional wall shear stress ~J(4p'iiB) is plotted in figure lO(a) along the radial 
co-ordinate for H = 4 and Re = 1,5,26,100,1000 and 2000. The velocity profile a t  the 
tube exit is assumed to be parabolic as before. The shear stress is zero at  R = 0 
(stagnation point flow) and approaches zero asymptotically for large R. Hence one can 
expect the shear stress to reach a peak and then decrease as indicated in figure 10 (a). 
For Re = 1, the peak value occurs around R = 1-8, i.e. outside the R = 1 circle defining 
the vertical projection of the tube on the target plane. When the Reynolds number of 
the flow increases, the location of the peak value of the wall shear stress gradually 
moves inward toward R = 0.85. When the Reynolds number is increased from 1 to 5, 
the value of the non-dimensional shear stress decreases. This is not unusual and 
happens in several other laminar flows such as flow over a flat plate or flow through a 
tube. However, a further increase in Re leads to an increme in the peak value of the 
non-dimensional shear stress. A look at the streamline patterns in figure 4 indicates 
that this is due to the growth in the size of the eddy and its being pushed downwards. 
Beyond a, value of about 100, an increase in Reynolds number leads to a decrertse in the 
peak value of the nondimensional shear stress. For high values of Reynolds number and 
away from the tube, all the dimensionless shear stress curves come closer together, 
with values at higher Re being slightly higher. Away from the tube, for high Reynolds 
numbers, all curves get closer together, with the values at  higher Reynolds numbers 
being slightly higher. 
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FIQURE 5. Vorticity contours, H = 4. Parabolic tube exit-velocity profile. 

(a) Re = 1; ( b )  Re = 100. 

Similar plots are shown in figure 10 (b) for the case when the velocity profile a t  the 
tube exit is almost flat as indicated in 9 2 (b). A substantial decrease in the shear stress 
from that in figure 10 (a) for the parabolic velocity profile is seen, especially close to the 
peak. The peak also occurs farther away from the axis. These results are to be expected 
since the momentum flux is reduced to 4 of the value for a parabolic velocity profile and 
is more uniformly distributed over the tube cross-section. 

The peak value of the non-dimensional shear stress is plotted as a function of Re in 
figure 11. Computations are done for several values of Reynolds number for the case 
of H = 4 and parabolic exit velocity profile. Flow cases of H = 3 with parabolic exit 
velocity profile and of H = 4 with flat exit velocity profile are also shown. Bringing the 
tube closer to the plane increases the peak wall shear stress and shifts the location of the 
peak closer to the axis, especially more so a t  lower values of Re. For the same value of H, 
the flat velocity profile leads to substantially lower peak values of the shear stress. 

It is interesting to compare the present results with those obtained by Saad et al. 
(1977) for the axisymmetric impinging jet confined between two plates. The maximum 
values of wall shear stress rw/4p52 from Saad et al. are available for H = 16 whereas 
the present results are for H = 4. This does not permit a direct comparison. However, 
some interesting conclusions can be drawn. Values of r,,,/4pG2 obtained in the present 
study and those obtained by Saad et al. are listed in table 2 for three values of Re and 
for parabolic and flat tube exit velocity profiles. For a high value of Re = 1960 and 
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FIGURE 0. Eddy centre location. x , H = 4; Q, H = 3. 
Parabolic tube exit-velocity profile. 

parabolic exit-velocity profile the two values are very close. As the Reynolds number 
is decreased the maximum value of the non-dimensional shear stress .J4pGZ obtained 
by Saad et al. is lower, mainly due to a higher value of H = 16. This is consistent with 
figure 11. Moreover, this influence is more pronounced for the case of flat exit-velocity 
profile. Further, the study of Saad et al. as well as the present study indicate a concave 
upwards curve of wall shear stress close to the stagnation point (figure 10 b )  when the 
exit-velocity profile is flat. 

4.4. Preasure and pressure gradient 
The non-dimensional radial pressure gradient along the wall is plotted for several 
Reynolds numbers in figure 12 for the case of H = 4 and parabolic exit-velocity profile. 
The pressure gradient is zero a t  R = 0 and rapidly decreases to a minimum and then 
increases. At larger radial distances, there is an area of small positive pressure gradient, 
especially at higher values of Re. The pressure gradient approaches zero as Rincreases. 
The peak value of the magnitude of the pressure gradient is reached within one radius 
and is located closer to the stagnation point than the peak wall shear stress. The peak 
value of this non-dimensional pressure gradient is indicated in figure 13 as a function 
of Re for H = 4 and H = 3 with parabolic exit-velocity profile, and for H = 4 with a 
flat exit-velocity profile. The pattern is somewhat similar to that of the maximum wall 
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FIQURE 12. Pregeure gradient aP/aR distribution on the wall, parabolic tube exit- 
velocity profle for H = 4 and Re = 26, 100, 600, 1O00, 2000. 
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Parabolic exit-velocity profile Flat exit-velocity profile 
1 r h 

\ r -3 

H = 4  H =  16 H = 4  H = 16 
Re Preeent Seed  et al. Present S a d  et al. 
460 0.034 0.0262 - - 
960 0.0253 0.0230 0.01 1 0.080 

1960 0.0184 0.0189 0.0067 0.0044 

TABLE 2. Comparieon of the maximum values of r,/4piss 
with thoee from Seed et d. (1977). 
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FIUUBE 13. Maximum value of ( - aP/aR) on the wall as a function of Re. Perabolic tube 
exit-velocity profile: 0, H = 4; a, H = 3. Flat exit-velacity,profile: x ,  H = 4. 

shear stress indicated in figure 11. Bringing the tube closer to the wall increases the 
magnitude of the peak and a flat velocity profile at the tube exit leads to a substantial 
decrease in the peak. The value of the non-dimensional pressure at the stagnation 
point,withreferencezero at apointfaraway,isindicatedasafunctionofReinfigure 14. 

5. Concluding remarks 
The steady state Navier-Stokes equations have been solved numerically for two 

Merent tube exit-velocity profiles and for two different nozzle heights for the problem 
of an axisymmetric jet impinging on a target plane. The entire range of laminar flow is 
covered for the case of H = 4. 

It may be of interest to gain some idea aa to when one may expect the flow to become 
tranritional. Chun & Schwarz (1967) examined the stability of the two-dimensional wall 
jet and found a critical value of Reynolds number Re6 based on the boundary-layer 
thickness 8 and the maximum radial velocity to be about 57. Similarly, Tsuji t 
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FIGURE 14. Stagnation point pressure P aa a function of Re ( P  = Po-P,).  Parabolic 
tube exit-velocity profile: 0, H = 4; 0,  H = 3. Flat exit-velocity profile: x , H = 4. 

Morikawa (1979) showed that an axisymmetric wall jet becomes unstable at a Reynolds 
number Reu of about 68. In case of similarity solution, Reu drops off as R-i. In our 
computations the values of Reu were about 10 and 85 at the boundary R = 10 for 
Re = 100 and 1000, respectively. Thus, it is unlikely that the flow will remain laminar 
everywhere in the higher Reynolds-number range considered in this study. However, 
these results should help toward a fuller understanding of the physics of the problem. 
Our experiments, in which the signal from a hot-film wall shear probe was viewed on 
an oscilloscope, indicated spikes characteristic of turbulence around Re = 1600 when 
the tube exit was 4 radii above the plane (H = 4) and the velocity profile at the tube 
exit was parabolic. 

The presence of a toroidal eddy at  low Reynolds numbers is interesting and does not 
seem to have been noticed before. The maximum wall shear stress is strongly influenced 
by the size and location of the eddy. In the laminar flow, the non-dimensional shear 
stress, 7,/(4pTi2), generally decreases if Re is increased. This is observed for Re < 6 in 
the present study. However, for Re > 5 a larger amount of fluid is set into circulation 
closer to the wall. This leads to an increase in the wall shear stress. The usual behaviour 
of a decrease in 7,/(4pE2) with an increase in Re occurs for Re > 100, because for 
these larger values of Re the eddy does not appear. Similar influences are felt on other 
flow quantities. 

When the velocity profile is flat, the jet contains smaller amounts of momentum and 
kinetic energy for the same mass flux compared with that of a jet with a parabolic 
velocity profile. Moreover, the momentum and kinetic energy are distributed uniformly 
over the cross-section. This results in lower values of peak shear stress on the wall. This 
result led to an interesting observation in our experiments with the canine endothelial 
tissue (Vaishnav et aE. 1978), where laminar and turbulent jets were used to erode the 
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tissue. When the Reynolds number was in the range of 2000 to 2400, and the flow was 
turbulent, the jet was found to be less damaging than one would expect on the basis of 
the shear stress values for a laminar flow with a parabolic tube exit-velocity profile. 
This is believed to be partially due to the turbulent jet having a flatter velocity profile 
and consequently a lower mean input momentum, and partially due to the lower flow 
velocities resulting from turbulent diffusive action. These factors perhaps more than 
compensated for the increase in the wall shear stress due to turbulence. 

Finally, we draw attention to the technique by which the boundary condition at  
the boundary R = 10 was handled. This technique may prove to be useful elsewhere. 

We thank Professors H. B. Atabek and C. von Kerczek for reading the manuscript 
critically. Support of PHS grants HL-15270 and HL-12083 and NSF grant ENG76O- 
0291 1 is gratefully acknowledged. 
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